

Pectus Excavatum and Poland's Syndrome

Surgical Correction AHM

Clinical Indications for Procedure

- Surgical treatment for severe pectus excavatum deformities that cause functional deficit are considered medically necessary when **ALL** of the following criteria are met
 - Documentation of complications arising from the sternal deformity. Complications include but may not be limited to **1 or more** of the following
 - Asthma
 - Atypical chest pain
 - Cardiopulmonary impairment documented by respiratory and/or cardiac function tests
 - Exercise limitation
 - Frequent lower respiratory tract infections
 - An electrocardiogram or echocardiogram has been done if a heart murmur or known heart disease is present to define the relationship of the cardiac problem to the sternal deformity
 - CT scan of the chest demonstrates a pectus index, derived from dividing the transverse diameter of the chest by the anterior-posterior diameter, greater than 3.25.
 - Surgical reconstruction of musculoskeletal chest wall deformities associated with Poland's syndrome that cause functional deficit medically necessary - See Breast Reconstruction AHM Guideline
 - Bracing and surgical procedures to correct pectus carinatum cosmetic because this deformity does not cause physiologic disturbances from compression of the heart or lungs
- Current role remains uncertain. Based on review of existing evidence, there are currently no clinical indications for this technology. See Inappropriate Uses for more detailed analysis of the evidence base. The following interventions for the treatment of pectus excavatum are considered experimental and investigational because their effectiveness has not been established.
 - The magnetic mini-mover procedure
 - The vacuum bell

- Dynamic Compression System

Evidence Summary

Background

- Pectus excavatum is often a cosmetic defect, but it may have varied anatomic and symptomatic presentations. There is no conclusive evidence supporting the existence of a functional component whose physiological basis can be consistently defined. Until recently, the indications for surgery in patients with pectus excavatum were based solely on clinical judgment because the extensive literature on pectus excavatum demonstrates that there is a discordance between patients' subjective assessment of shortness of breath and objective measures of cardiorespiratory function. In more recent years, the judgment of when to proceed with surgery has been made more objective by following the pectus index criteria advocated by Haller for surgical intervention. CT scans used in patients being evaluated for surgery document more clearly the severity of the foreshortening of the anteroposterior diameter of the chest, the degree of cardiac compression and displacement, the degree of lung compression and other unexpected problems. It clarifies the need for operation by showing the dramatic internal morbidity of what is often portrayed as a "cosmetic" deformity.
- As originally described by Sir Alfred Poland, Poland's Syndrome consists of absence or hypoplasia of the pectoralis major and minor muscles, hypoplasia or absence of nipple and breast, hypoplasia of subcutaneous fat, absence of axillary hair, and partial absence of the upper costal cartilages and portions of ribs, usually the second, third, and fourth. The absence of the sternal head of the pectoralis major muscle is considered the minimal expression of this syndrome (Wilhelmi & Cornette, 2002). Brachysyndactyly, ectrodactyly, and ectromelia are frequently described associations.
- In children with very severe deformity, staged procedures involving split rib grafts from the contralateral side combined with Teflon felt or Marlex mesh have been advocated. This results in a stable chest wall, abolition of paradoxical movement, and protection of the subjacent viscera. In the absence of the pectoralis major and with deficient breast and subcutaneous tissue, the chest is still visibly asymmetric. As soon as the asymmetry becomes a problem for the adolescent female patient, a round tissue expander can be placed beneath the pectoralis muscle and hypoplastic breast through a transaxillary incision, to avoid scars on the breast itself. The prosthesis is then inflated at appropriate intervals to maintain symmetry until development of the opposite breast stabilizes, at

which time the expander can be replaced with a prosthetic mammary implant or an autologous soft-tissue transfer using pedicled myocutaneous flap

- Schier et al (2005) described their experience in using a vacuum to pull the abnormal chest wall outward in patients with PE. A suction cup was used to create a vacuum at the chest wall. A patient-activated hand pump was used to reduce pressure up to 15 % below atmospheric pressure (atm). The device was used by 60 patients (56 males and 4 females), aged 6.1 to 34.9 years (median of 14.8 years), for a minimum of 30 mins, twice-daily, up to 5 hours per day (median of 90 mins). Patient progress was documented using photography, radiography, and plaster casts of the defect. In 14 children this method was used during the Nuss procedure to enlarge the retrosternal space for safer passage of the introducer. Follow-up occurred between 2 and 18 months (median of 10 months). Computed tomographic scans showed that the device lifted the sternum and ribs within 1 to 2 mins; this was confirmed thoracoscopically during the Nuss procedure.
- The suction cup enlarged the retrosternal space for safer passage of the introducer. Initially, the sternum sank back after few minutes. After 1 month, an elevation of 1 cm was noted in 85 % of the patients. After 5 months, the sternum was lifted to a normal level in 12 patients (20 %) when evaluated immediately after using the suction cup. All patients exhibited moderate subcutaneous hematoma, although the skin was not injured. One patient suffered from transient paresthesia in the right arm and leg; 2 patients experienced orthostatic disturbances during the first application of the suction cup. There were no other complications. In patients with PE, application of a vacuum effectively pulled the depressed anterior chest wall forward.
- The initial results proved dramatic, although it is not yet known how much time is required for long-term correction. The authors concluded that this vacuum method holds promise as a valuable adjunct treatment in both surgical and non-surgical correction of PE.
- Haecker and Mayr (2006) examined the benefits of conservative treatment of patients with PE by means of the vacuum bell. A suction cup is used to create a vacuum at the anterior chest wall. A patient-activated hand pump is used to reduce the pressure up to 15 % below atm. Three different sizes of vacuum bell exist that were selected according to the individual patient's age. When creating the vacuum, the lift of the sternum was obvious and remained for a different time period. The device should be used for a minimum of 30 mins (twice-daily), and may be used up to a maximum of several hours daily. Presently, a 12- to 15-month course of treatment is recommended. In addition, the device was used intra-operatively during the minimally invasive repair (MIRPE) procedure to enlarge the retrosternal space to ensure safer passage of the introducer in a few patients.
- A total of 34 patients (31 males and 3 females), aged 6 to 52 years (median of 17.8 years) used the vacuum bell for 1 to maximum 18 months (median of 10.4 months). Follow-up

included photography and clinical examination every 3 months. Computed tomographic scans showed that the device lifted the sternum and ribs immediately. In addition, this was confirmed thoroscopically during the MIRPE procedure. After 3 months, an elevation of more than 1.5 cm was documented in 27 patients (79 %). After 12 months, the sternum was lifted to a normal level in 5 patients (14.7 %). Relevant side effects were not noted. The authors concluded that the vacuum bell has proved to be an alternative therapeutic option in selected patients with PE. Moreover, they stated that while the initial results proved to be dramatic, long-term results are so far lacking, and further evaluation and follow-up studies are necessary.

- Haecker (2011) provided additional data on the 2006 trial by Haecker and Mayr; but the conclusion remained unchanged. A total of 133 patients (110 males and 23 females) aged from 3 to 61 years (median of 16.21 years) used the vacuum bell for 1 to a maximum of 36 months. Computed tomographic scans showed that the device lifted the sternum and ribs immediately. In addition, this was confirmed thoroscopically during the MIRPE procedure. A total of 105 patients showed a permanent lift of the sternum for more than 1 cm after 3 months of daily application; 13 patients stopped the application and underwent MIRPE. Relevant side effects were not noted. The authors concluded that the vacuum bell has proved to be an alternative therapeutic option in selected patients suffering from PE. The initial results proved to be dramatic, but long-term results are so far lacking, and further evaluation and follow-up studies are necessary.
- Harrison et al (2007) noted that correction of PE results in measurable improvement in lung capacity and cardiac performance as well as improved appearance and self-image. The Nuss and modified Ravitch approaches attempt to correct the chest wall deformity by forcing the sternum forward in 1-step and holding it in place using a metal strut. The initial operation requires extensive manipulation under general anesthesia and results in post-operative pain, requiring hospitalization and regional anesthesia. Pain and disability may last for weeks. Both procedures are expensive. A better principle would be a gradual bit-by-bit repair via small increments of pressure applied over many months. These researchers developed the magnetic mini-mover procedure (3MP) and applied this strategy to correct PE. The procedure uses magnetic force to pull the sternum forward.
- An internal magnet implanted on the sternum and an external magnet in a non-obtrusive custom-fitted anterior chest wall orthosis produce an adjustable outward force on the sternum. Outward force is maintained until the abnormal costal cartilages are remodeled and the pectus deformity is corrected. These investigators implanted a magnet in human skeletons and measured the force applied to the sternum when the distance between the internal and external magnets was varied in increments. With the 2 magnets 1 cm apart, the outward force was adequate to move the sternum at least 1 cm. They also mapped the magnetic field in the 2-magnet configuration and found that maximum field strengths at the surface of the heart and at the outer surface of the orthosis were at safe levels.

- The authors concluded that the 3MP allows correction of PE by applying magnetic force over a period of months. Crucial questions raised during the design, re-design, and simulation testing have been satisfactorily answered, and the authors have received a Food and Drug Administration (FDA) Investigation Device Exemption (G050196/A002) to proceed with a phase I to II clinical trial.
- Harrison et al (2012) performed a pilot study of safety, probable efficacy, and cost-effectiveness of 3MP. A total of 10 otherwise healthy patients, aged 8 to 14 years, with severe pectus excavatum (pectus severity index [PSI] greater than 3.5) underwent 3MP treatment (mean of 18.8 +/- 2.5 months). Safety was assessed by post-implant and post-explant electrocardiograms and monthly chest x-rays. Efficacy was assessed by change in pectus severity index as measured using pre-treatment and post-treatment computed tomographic scan. Cost of 3MP was compared with that of standard procedures. The 3MP device had no detectable ill effect. Device weld failure or mal-positioning required revision in 5 patients. Average wear time was 16 hrs/day.
- Pectus severity index improved in patients in the early or mid-puberty but not in patients with non-compliant chest walls. Average cost for 3MP was \$46,859, compared with \$81,206 and \$81,022 for Nuss and Ravitch, respectively. The authors concluded that the 3MP is a safe, cost-effective, outpatient alternative treatment for pectus excavatum that achieves good results for patients in early and mid-puberty stages.
- Ji and Luan (2012) reviewed the current development in therapy of congenital funnel chest. The main therapies for congenital funnel chest are thoracoplasty (Ravitch sternum elevation procedure and minimal invasive Nuss procedure) and prosthesis implantation. The magnetic mini-mover procedure and the vacuum bell are still in the research phase.
- An UpToDate review on "Pectus excavatum: Treatment" (Mayer, 2013) states that "Currently, surgical correction for PE is done with either the modified Ravitch procedure (open resection of the subperichondrial cartilage and sternal osteotomy, with placement of an internal stabilizing device), or the Nuss procedure (minimally invasive technique in which a curved bar is inserted to lift the sternum; the bar is removed about two years later)".
- An UpToDate review on "Pectus carinatum" (Nuchtern and Mayer, 2014) states that "In more than 90 percent of patients, pectus carinatum deformity is first noted during early adolescence, and it often worsens dramatically during the adolescent growth spurt. The defect does not resolve spontaneously. The vast majority of patients have no physiologic symptoms, and cosmetic appearance is the primary concernThe decision of whether to treat depends on the severity of the defect, and the patient and family's level of concern".

References

ActiveHealth Management
Medical Management Guidelines

1. Nuss D, Kelly RE Jr, Croitoru DP, et al. A 10-year review of a minimally invasive technique for the correction of pectus excavatum. *J Pediatr Surg.* 1998;33(4):545-552.
2. Quigley PM, Haller JA Jr, Jelus KL, et al. Cardiorespiratory function before and after corrective surgery in pectus excavatum. *J Pediatr.* 1996;128(5 Pt 1):638-643.
3. Shamberger RC. Congenital chest wall deformities. *Current problems in surgery.* 1996;23:471-542.
4. Fonkalsrud EW, Salman T, Guo W, et al. Repair of pectus deformities with sternal support. *J Thorac Cardiovasc Surg.* 1994;107:37-42.
5. Morshuis WJ, Folgering HT, Barentsz JO, et al. Exercise cardiorespiratory function before and one year after operation for pectus excavatum. *J Thorac Cardiovasc Surg.* 1994;107:1403-1409.
6. Morshuis W, Folgering H, Barentsz J, et al. Pulmonary function before surgery for pectus excavatum and at long-term follow-up. *Chest.* 1994;105(6):1646-1652.
7. Ellis DG, Snyder CL, Mann CM. The 're-do' chest wall deformity correction. *J Pediatr Surg.* 1997;32(9):1267-1271.
8. de Matos AC, Bernardo JE, Fernandes LE, Antunes MJ. Surgery of chest wall deformities. *Eur J Cardiothorac Surg.* 1997;12(3):345-350.
9. Kobayashi S, Yoza S, Komuro Y, et al. Correction of pectus excavatum and pectus carinatum assisted by the endoscope. *Plast Reconstr Surg.* 1997;99 (4):1037-1045.
10. Actis Dato GM, De Paulis R, Actis Dato A, et al. Correction of pectus excavatum with a self-retaining seagull wing prosthesis. Long-term follow-up. *Chest.* 1995;107(2):303-306.
11. Morshuis WJ, Mulder H, Wapperom G, et al. Pectus excavatum: A clinical study with long term postoperative follow up. *Eur J Cardiothorac Surg.* 1992;6(6):318-328; discussion 328-329.
12. Kaguraoka H, Ohnuki T, Itaoka T, et al. Degree of severity of pectus excavatum and pulmonary function in preoperative and postoperative periods. *J Thorac Cardiovasc Surg.* 1992;104:1483-1488.
13. Haller JA Jr, Scherer LR, Turner CS, et al. Evolving management of pectus excavatum based on a single institutional experience of 664 patients. *Ann Surg.* 1989;209(5):578-582.
14. Shamberger RC, Welch KJ. Cardiopulmonary function in pectus excavatum. *Surg Gynecol Obstet.* 1988;166:383-391.
15. Haller JA Jr, Kramer SS, Lietman SA. Use of CT scans in selection of patients for pectus excavatum surgery: A preliminary report. *J Pediatr Surg.* 1987;22(10):904-906.
16. Stavrev PV, Stavrev VP, Beshkov KN. Surgical correction of funnel chest. *Folia Med (Plovdiv).* 2000;42(2):57-60.
17. Fonkalsrud EW, Dunn JC, Atkinson JB. Repair of pectus excavatum deformities: 30 years of experience with 375 patients. *Ann Surg.* 2000;231(3):443-448.
18. Swoveland B, Medvick C, Kirsh M, et al. The Nuss procedure for pectus excavatum correction. *AORN J.* 2001;74(6):828-841; quiz 842-845, 848-580.
19. Miller KA, Ostlie DJ, Wade K, et al. Minimally invasive bar repair for 'redo' correction of pectus excavatum. *J Pediatr Surg.* 2002;37(7):1090-1092.
20. Erdogan A, Ayten A, Oz N, Demircan A. Early and long-term results of surgical repair of pectus excavatum. *Asian Cardiovasc Thorac Ann.* 2002;10(1):39-42.

21. Fonkalsrud EW, DeUgarte D, Choi E. Repair of pectus excavatum and carinatum deformities in 116 adults. *Ann Surg.* 2002;236(3):304-312; discussion 312-314.
22. National Institute for Clinical Excellence (NICE). Minimally invasive placement of pectus bar. *Interventional Procedure Guidance 3.* London, UK: NICE; July 2003.
23. Goretzky MJ, Kelly RE Jr, Croitoru D, Nuss D. Chest wall anomalies: Pectus excavatum and pectus carinatum. *Adolesc Med Clin.* 2004;15(3):455-471.
24. Nuss D. Recent experiences with minimally invasive pectus excavatum repair 'Nuss procedure'. *Jpn J Thorac Cardiovasc Surg.* 2005;53(7):338-344.
25. Malek MH, Berger DE, Housh TJ, et al. Cardiovascular function following surgical repair of pectus excavatum: A metaanalysis. *Chest.* 2006;130(2):506-516.
26. Malek MH, Berger DE, Marelich WD, et al. Pulmonary function following surgical repair of pectus excavatum: A meta-analysis. *Eur J Cardiothorac Surg.* 2006;30(4):637-643.
27. Schalamon J, Pokall S, Windhaber J, Hoellwarth ME. Minimally invasive correction of pectus excavatum in adult patients. *J Thorac Cardiovasc Surg.* 2006;132(3):524-529.
28. Guntheroth WG, Spiers PS. Cardiac function before and after surgery for pectus excavatum. *Am J Cardiol.* 2007;99(12):1762-1764.
29. Kelly RE Jr, Shamberger RC, Mellins RB, et al. Prospective multicenter study of surgical correction of pectus excavatum: Design, perioperative complications, pain, and baseline pulmonary function facilitated by internet-based data collection. *J Am Coll Surg.* 2007;205(2):205-216.
30. Protopapas AD, Athanasiou T. Peri-operative data on the Nuss procedure in children with pectus excavatum: Independent survey of the first 20 years' data. *J Cardiothorac Surg.* 2008;3:40.
31. Kelly RE Jr, Cash TF, Shamberger RC, et al. Surgical repair of pectus excavatum markedly improves body image and perceived ability for physical activity: Multicenter study. *Pediatrics.* 2008;122(6):1218-1222.
32. Coelho Mde S, Silva RF, Bergonse Neto N, et al. Pectus excavatum surgery: Sternochondroplasty versus Nuss procedure. *Ann Thorac Surg.* 2009;88(6):1773-1779.
33. Nasr A, Fecteau A, Wales PW. Comparison of the Nuss and the Ravitch procedure for pectus excavatum repair: A meta-analysis. *J Pediatr Surg.* 2010;45(5):880-886.
34. Esteves E, Paiva KC, Calcagno-Silva M, et al. Treatment of pectus excavatum in patients over 20 years of age. *J Laparoendosc Adv Surg Tech A.* 2011 Jan 8. [Epub ahead of print]
35. Hodgkinson DJ. Re: Poland's deformity reconstruction with a customized extrasoft silicone prosthesis. *Ann Plast Surg.* 1998;40(2):194-195.
36. Karnak I, Tanyel FC, Tuncbilek E, et al. Bilateral Poland anomaly. *Am J Med Genet.* 1998;75(5):505-507.
37. Jasonni V, Lelli-Chiesa PL, Repetto P, et al. Congenital deformities of the chest wall. Surgical treatment. *Minerva Pediatr.* 1997;49(9):407-413.
38. Gatti JE. Poland's deformity reconstructions with a customized, extrasoft silicone prosthesis. *Ann Plast Surg.* 1997;39(2):122-130.

39. Longaker MT, Glat PM, Colen LB, et al. Reconstruction of breast asymmetry in Poland's chest-wall deformity using microvascular free flaps. *Plast Reconstr Surg.* 1997;99(2):429-436.
40. Martinazzoli A, Cangemi V, Baccarini AE, et al. Poland syndrome. Problems of reconstructive and aesthetic surgery -- a clinical case. *G Chir.* 1995;16(11-12):497-501.
41. Pileggi AJ. Poland's syndrome. *Clin Pediatr (Phila).* 1991;30(2):125.
42. Mestak J, Zadrozna M, Cakrtova M. Breast reconstruction in women with Poland's syndrome. *Acta Chir Plast.* 1991;33(3):137-144.
43. Lord MJ, Laurenzano KR, Hartmann RW Jr. Poland's syndrome. *Clin Pediatr (Phila).* 1990;29(10):606-609.
44. Marks MW, Iacobucci J. Reconstruction of congenital chest wall deformities using solid silicone onlay prostheses. *Chest Surg Clin N Am.* 2000;10(2):341-355.
45. Hodgkinson DJ. The management of anterior chest wall deformity in patients presenting for breast augmentation. *Plast Reconstr Surg.* 2002;109(5):1714-1723.
46. Borschel GH, Izenberg PH, Cederna PS. Endoscopically assisted reconstruction of male and female poland syndrome. *Plast Reconstr Surg.* 2002;109(5):1536-1543.
47. Wilhelm BJ, Cornette PB. Breast, Poland syndrome. eMedicine Plastic Surgery Topic 132. Omaha, NE: eMedicine.com; updated August 5, 2002. Available at: <http://www.emedicine.com/plastic/topic132.htm>. Accessed August 14, 2003.
48. Hamdi M, Blondeel P, Van Landuyt K, et al. Bilateral autogenous breast reconstruction using perforator free flaps: A single center's experience. *Plast Reconstr Surg.* 2004;114(1):83-89; discussion 90-92.
49. Freitas Rda S, Tolazzi AR, Martins VD, et al. Poland's syndrome: Different clinical presentations and surgical reconstructions in 18 cases. *Aesthetic Plast Surg.* 2007;31(2):140-146.
50. Baban A, Torre M, Bianca S, et al. Poland syndrome with bilateral features: Case description with review of the literature. *Am J Med Genet A.* 2009;149A(7):1597-1602.
51. Fekih M, Mansouri-Hattab N, Bergaoui D, et al. Correction of breast Poland's anomalies. About eight cases and literature review. *Ann Chir Plast Esthet.* 2010;55(3):211-218.
52. Kobayashi S, Yoza S, Komuro Y, et al. Correction of pectus excavatum and pectus carinatum assisted by the endoscope. *Plast Reconstr Surg.* 1997;99(4):1037-1045.
53. Haje SA. Pectus carinatum successfully treated with bracing -- a case report. *Int Orthop.* 1995;19(5):332-333.
54. Mielke CH, Winter RB. Pectus carinatum successfully treated with bracing. A case report. *Int Orthop.* 1993;17(6):350-352.
55. Snajdauf J, Sintakova B, Fryc R, et al. Surgical treatment of pectus excavatum and pectus carinatum. *Cesk Pediatr.* 1993;48(10):581-585.
56. Shamberger RC, Welch KJ. Surgical correction of pectus carinatum. *J Pediatr Surg.* 1987;22(1):48-53.
57. Ellis DG. Chest wall deformities. *Pediatr Rev.* 1989;11(5):147-151.
58. Fonkalsrud EW, Beanes S. Surgical management of pectus carinatum: 30 years' experience. *World J Surg.* 2001;25(7):898-903.

59. Mavanur A, Hight DW. Pectus excavatum and carinatum: New concepts in the correction of congenital chest wall deformities in the pediatric age group. *Conn Med.* 2008;72(1):5-11.
60. Robicsek F, Watts LT, Fokin AA. Surgical repair of pectus excavatum and carinatum. *Semin Thorac Cardiovasc Surg.* 2009;21(1):64-75.
61. Goretsky M, Kelly R, Croitoru D, Nuss D. Chest wall anomalies: Pectus excavatum and pectus carinatum. *Adolescent Med Clinic.* 2004;15(3):455-471.
62. Lee SY, Lee SJ, Jeon CW, Lee CS, Lee KR. Effect of the compressive brace in pectus carinatum. *Eur J Cardiothorac Surg.* 2008;34(1):146-149.
63. Egan JC, DuBois JJ, Morphy M, et al. Compressive orthotics in the treatment of asymmetric pectus carinatum: A preliminary report with an objective radiographic marker. *J Pediatr Surg.* 2000;35(8):1183-1186.
64. Banever GT, Konefal SH, Gettens K, Moriarty KP. Nonoperative correction of pectus carinatum with orthotic bracing. *J Laparoendosc Adv Surg Tech A.* 2006;16(2):164-167.
65. Kravarusic D, Dicken BJ, Dewar R, et al. The Calgary protocol for bracing of pectus carinatum: A preliminary report. *J Pediatr Surg.* 2006;41(5):923-926.
66. Coelho Mde S, Guimarães Pde S. Pectus carinatum. *J Bras Pneumol.* 2007 Aug;33(4):463-74.
67. Stephenson JT, Du Bois J. Compressive orthotic bracing in the treatment of pectus carinatum: The use of radiographic markers to predict success. *J Pediatr Surg.* 2008;43(10):1776-1780.
68. Mavanur A, Hight DW. Pectus excavatum and carinatum: New concepts in the correction of congenital chest wall deformities in the pediatric age group. *Conn Med.* 2008;72(1):5-11.
69. Coskun ZK, Turgut HB, Demirsoy S, Cansu A. The prevalence and effects of pectus excavatum and pectus carinatum on the respiratory function in children between 7-14 years old. *Indian J Pediatr.* 2010;77(9):1017-1019.
70. Frantz FW. Indications and guidelines for pectus excavatum repair. *Curr Opin Pediatr.* 2011;23(4):486-491.
71. Schier F, Bahr M, Klobe E. The vacuum chest wall lifter: An innovative, nonsurgical addition to the management of pectus excavatum. *J Pediatr Surg.* 2005;40(3):496-500.
72. Haecker FM, Mayr J. The vacuum bell for treatment of pectus excavatum: An alternative to surgical correction? *Eur J Cardiothorac Surg.* 2006;29(4):557-561.
73. Harrison MR, Estefan-Ventura D, Fechter R, et al. Magnetic Mini-Mover Procedure for pectus excavatum: I. Development, design, and simulations for feasibility and safety. *J Pediatr Surg.* 2007;42(1):81-85; discussion 85-86.
74. Haecker FM. The vacuum bell for conservative treatment of pectus excavatum: The Basle experience. *Pediatr Surg Int.* 2011;27(6):623-627.
75. Harrison MR, Gonzales KD, Bratton BJ, et al. Magnetic mini-mover procedure for pectus excavatum III: Safety and efficacy in a Food and Drug Administration-sponsored clinical trial. *J Pediatr Surg.* 2012;47(1):154-159.
76. Ji K, Luan J. Current development in therapy of congenital funnel chest. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.* 2012;26(12):1516-1518.

77. Mayer OH. Pectus excavatum: Treatment. UpToDate [online serial]. Waltham, MA: UpToDate; reviewed February 2013.

Reviewed by a Board Certified Internist

Reviewed by David Evans, MD, Medical Director, Active Health Management- June 2016

Copyright 2016 ACTIVEHEALTH MANAGEMENT

No part of this document may be reproduced without permission.

Footnotes

[A] See Clinical Indications for Procedure in this guideline. [A in Context Link [1](#)]

[B] In patients without air leak, chest tubes may be managed with water seal instead of suction. [B in Context Link [1](#)]

[C] See Intensive, Intermediate, and Telemetry Care Guidelines [C in Context Link [1](#)]

[D] Chest tubes may be discontinued if there is no air leak and drainage is 450 mL per day or less. [D in Context Link [1](#)]

[E] Stable chest x-ray shows expected postoperative changes without pneumothorax, evidence of new infection, or other complications. [E in Context Link [1](#)]

[F] Use oral or parenteral pain medication as needed. [F in Context Link [1](#)]

[G] Patient is either afebrile or at the expected temperature related to the process being diagnosed. [G in Context Link [1](#)]

[H] Chest tubes may be discontinued if there is no air leak and drainage is 450 mL per day or less. [H in Context Link [1](#)]

[I] Discharge planning may be done as part of Outpatient Care Planning, initial Hospital Care Planning, or in preparation for hospital discharge. [I in Context Link [1](#)]

[J] Treating providers may include thoracic surgeon, pulmonologist, oncologist, and radiation oncologist. [J in Context Link [1](#)]

Codes

CPT® or HCPCS: 11960, 11970, 11971, 19340, 19342, 19357, 19361, 19364, 19366, 19367, 19368, 19369, 20900, 20902, 21740, 21742, 21743